Early Holocene Investigations at Saksunardalur and the Origins of the Faroese Biota

Eldri holosenar rannsóknir úr Saksunardali og upprunin til tað føroyska biota

Paul C. Buckland¹, Kevin J. Edwards¹ and Jon P. Sadler²

- 1: Department of Archaeology and Prehistory, Sheffield University, Northgate House, West Street, Sheffield S1 4ET, England
 Phone: +44 114 222 2913, fax: +44 114 272 2563, e-mail: p.buckland@sheffield.ac.uk
- 2: School of Geography, University of Birmingham, Birmingham B15 2TT, UK

Úrtak

Royndir av skordýrum og flogsáð vórðu tiknar av nøkrum støðum fram við Saksunardali í Streymoy. Skordýraroyndirnar vóru fjaldar av tefru frá einum miðholosenum eldgosi úr íslendska gosfjallinum Heklu, og nakrar royndir høvdu eitt undirlag av saksunarvatnsøsku. Flogsáðrøðin varð tikin tvørtur ígjøgnum saksunarvatnsøskuna, einar 4 km í ein landsynning úr vatninum. Tey biota, ið vórðu funnin, kunnu nýtast til framhaldandi kanningar av upprunaligum plantu- og djóralívi, og hvussu føroyska landslagið var í eldri tíð.

Abstract

Insect and pollen samples were recovered from a series of locations along Saksunardalur on Streymoy, Faroe Islands. The insect samples were sealed by tephra from a mid-Holocene eruption of the Iccelandic volcano Hekla, and one series was underlain by the Saksunarvatn Ash. The pollen sequence was taken across the Saksunarvatn Ash, some 4 km south east of the lake. The identified biota provide a basis for discussion of the origins of the flora and fauna, and the nature of the early Faroese land-scape.

Introduction

Lying some 320 km north west of the nearest point on the Scottlish mainland, the Faroe Islands possess an essentially cool temperate palaearctic biota, showing close relationships with northern Britain and western Norway (Enckell, 1985). The origins of the flora and fauna of the Atlantic islands have been much discussed (e.g. Löve and Löve, 1963; Lindroth et al., 1988). Botanists (e.g. Dahl, 1987), in particular, have tended towards the refugia hypothesis, in which during the maximum of glaciation, ice-free areas, either nunataks or on the coastal plain below present sea level provided refuges for elements of the biota to survive at least since the late Tertiary through repeated glacial interglacial cycles. This model was largely refuted by Buckland and Dugmore (1991), who pointed out that the prevailing climate at glacial maxima would have been similar to the ice-free dry areas of Antarctica, where there is no life beyond lichens, algae and microfungi in the surface of the rock. The hypothesis of long term survival *in situ*, however still has some adherents, despite the lack of endemic speces.

In the long term, however, any theoretical model can be supported or negated by recourse to the fossil record. The history of the flora has been considered by Jóhansen (1985), and Enckell (1985) has examined several elements in the invertebrate fauna. The fossil record of the Coleoptera was included by Buckland (1988) in his overview of the origins of North Atlantic island biota, although the detail of the various sites was not included in that essentially synthetic study. Coope (1986) had favoured a model in which the primary immigration of much of the plant and animal assemblage took place during a short ice rafting event from Scotland during the initial warming of the Lateglacial, ca 12 500 radiocarbon years ago, whilst Buckland and his coworkers (1988; Buckland et al., 1986a) use a similar ice rafting model, although preferring a west Norwegian origin and placing it during the phase of rapid warming which opened the present interglacial some 10 000 radiocarbon years ago. Enckell (1985) agrees with Buckland, but indicates the Scottish affinities of much of the invertebrate fauna. Recent work on Lateglacial sediments in northern Iceland (Björk et al., 1997; Rundgren, 1997) could be taken to indicate both Lateglacial and earliest Holocene phases of immigration, although the final cold stage of the Younger Dryas

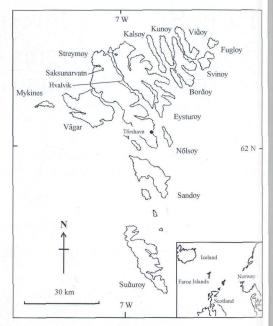


Fig. 1. Location map of the Faroes, showing Saksunardalur.

Mynd 1. Støðukort av Føroyum, sum vísir Saksunardal.

would have extinguished all but the most hardy cold stenotherms.

In the Faroes, the extent of the Late Weichselian and Younger Dryas ice sheet has only recently become the subject of detailed geomorphological research (e.g. Humlum *et al.*, 1996), and there are still no published palynological or other fossil records through the Lateglacial into the Holocene. The absence of human settlement until sometime late in the first millennium AD (Jóhansen, 1985; Arge, 1989), however, means that the fossil record for most of the Holocene lacks anthropogenic elements, and a baseline can be established from which to view the development of the biota.

Saksunardalur

The Saksunarvatn ash was first reported from the palaeolake site of Hoydalar, Streymoy by Waagstein and Jóhansen in 1968. In 1972, Jóhansen was able to obtain a long core from the lake Saksunarvatn, towards the north west end of the through valley from Hvalvik to Saksun in northern Stremoy (Fig. 1). At a depth centred around 30 m, the same tephra horizon, in this case some 0.45 m in thickness and not the (0.01 m as at Hoydalur, was noted (Jóhansen, 1978; Mangerud et al., 1986). The ash is now known to be widespread in the North Atlantic region and has been dated to ca 8930-9060 BP (Birks et al., 1996). Although the ash thickness of 0.45 m clearly indicates some redeposition into the basin, it appeared probable that the layer could be traced into adjacent peat deposits and used as an isochrone, in order to obtain a more extensive macrofossil record. In 1980, two thin white tephra horizons had been noted in abandoned peat cuttings south east of the lake, close to where Persson (1971) had identified similar ash layers, which he had been able to ascribe a source in mid-Holocene eruptions of the volcano Hekla in Iceland. Resampling by Dugmore (in prep.) has confirmed the presence of Hekla tephra layers H_{sv} and H₄ in the Faroes, although it is unfortunate that the Saksunardalur sampling locality visited in 1980 had been levelled for cultivation by a second visit in 1982.

Exposures in the peat cuttings in 1980 were badly eroded, and the two samples taken (P1 & P2) came from a section in the stream bank to the northeast (Fig. 2), where

the exposure could be easily cut back and cleaned. The excellent preservation of the insects in this material, led to a return visit to the valley in 1982, in company with Jóhansen, to obtain samples from beneath the lower Hekla ash down to the underlying bedrock, close to the location where Persson had obtained his tephra samples. Unlike the disturbed stratigraphy of the 1980 locality, this site, although cut over for peat, had 0.5 m of peat down to the underlying bedrock, and a tephra horizon at the base was tentatively identified in the field as the

Fig. 2. Section for insect remains in Saksunardalur (1985).

Mynd 2. Partar av Saksunardali, har skordýraleivdir eru (1985).

Taxon	P2	P1	S1	S2	S3	S4	S5	
Carabidae								
Nebria rufescens (Strom.)						1		
Trechus obtusus Er.	1		1		6	3	2	
Patrobus septentrionis (Dej.)	3		1			1		
Patrobus sp.							2	
Trichocellus placidus (Gyll.)					1			
Dytiscidae								
Hydroporus pubescens (Gyll.)		1	12	3	3			
H. nigrita (F.)		2			1			
Hydroporus spp.	988 MAP 150	3	33	5	13	2	3	
Agabus bipustulatus (L.)	1	1	1	- 1	1	. 1		
Hydrophilidae								
Helophorus flavipes (F.)					1			
Coelostoma orbiculare (F.)		3						
Anacaena globulus (Payk.)	1	2						
Olophrum fuscum (Grav.)	2	8						
Lesteva heeri Fauv.	3	10	1	2	8	5		
L. longoelytrata Goez.	3				1	5	2	
Stenus spp.	2	7	4	2	2			
Lathrobium brunnipes (F.)	. 1	1	1		2	- 1	1	
Othius punctulatus (Goez.)	1	1						
O. angustus Steph.	2	1					1	
Quedius curtipennis Bernh.			1		-1			
Q. umbrinus Er.	1	2						
Q. boops (Grav.) group	1							
Aleocharinae_gen. indet.	2		1		3			
Elateridae								
Hypnoidus riparius (F.)	1							
Scirtidae								
Elodes minuta (L.)	2	3						
Curculionidae								
Otiorhynchus nodosus (Müll.)						1	1	
Micrelus ericae (Gyll.)	1							

Table 1. Insect remains from Saksunardalur Talva 1. Skordýraleivdir úr Saksunardali.

Saksunarvatn ash. A column of seven samples in 100 mm slices was taken down to the bedrock, although the two basal ones, an organic silt rather than a peat, lacked any preserved insect material. A recent visit (1998) showed this site to have also been destroyed, and a column for pollen analysis had to be taken further to the southeast (from an excavated section of blanket peat containing the ash layer, at an altitude of about 85 m above sea level and 4.0 km southeast of Saksunarvatn).

The insect faunas

All samples, each of approximately 5 kg, were washed out over a 300 µm sieve and the resultant residues flosted with paraffin (kerosene). Table 1 lists the taxa recovered; taxonomy follows Lucht (1987). In addition to the Coleoptera, numerous fragments of caddis fly (Trichoptera) were also picked out of the floats.

Although there is variation between samples, the overall picture from both locations is of a bog with open water pools, which

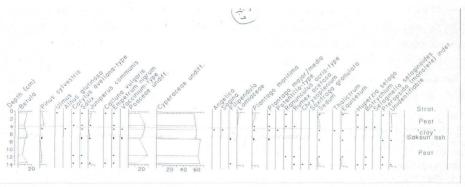


Fig. 3. Pollen and spore diagram from Saksunardalur. All taxa expressed as percentages of total land pollen excluding alien arboreal taxa. $\bullet = < 2\%$.

Mynd 3. Strikumynd av flogsåð og grókorni úr Saksunardali. Øll taxa eru lýst sum prosentpartur av øllum landflogsåð, undantikin fremmand taxa, sum liva á trøum. • = < 2 %.

provide habitat for the water beetles. The dytiscids Agabus bipustulatus, Hydroporus nigrita and H. pubescens are fairly eurytopic in their requirements, occurring in both oligotrophic and mesotrophic waters (Nilsson and Holmen, 1995), whilst the hydrophilid Anacaena globulus also extends to streams, wet meadow and grassland (Hansen, 1987). Coelostoma orbiculare, found in shallow water and moss at the water's edge (Koch, 1989), is not currently recorded from the Faroes, despite extensive recent pit fall trapping of the beetle fauna (Bengtson, 1981; Dinnin et al. unpubl.), although it is widespread in Central and Northern Europe. Whether it has succumbed to the large scale modification of virtually all of Faroes' wetlands by human activity, or has been overlooked, has yet to be ascertained.

Several of the other species recovered from the Saksunardalur samples are now rare in the islands. The staphylinid *Lathro-*

bium brunnipes is present in most samples, yet modern specimens are restricted to a single locality on Vagar. It shows a similar pattern of being a frequent fossil and rare at the present day in southern Iceland (Buckland *et al.*, 1991).

The fossil assemblage is typical of most remote islands in the paucity of monophagous or oligophagous phytophages. Of the two weevils, *Otiorhynchus nodosus* is polyphagous in most semi-natural habitats in Faroe, the larvae feeding on plant roots, whilst *Micrelus ericae* is usually found on *Calluna vulgaris*, although occasionally it may be found on the flowers of *Erica* spp. The elaterid *Hypnoidus riparius* and the scirtid *Elodes minuta* are also characteristic of wet grassland and meadow.

The pollen data

The visible black ash layer at the pollen site was 1.0 cm thick and was underlain by black humified peat. Above the ash layer

was a brownish clayey layer 1.7 cm in thickness and this was overlain by black humified peat. High resolution sampling with contiguous 2 mm thick layers was conducted across the Saksunarvatn ash deposits. Beyond the close-sampled sequences, sample thicknesses of 10 mm were employed with sampling intervals up to 40 mm. Samples were pre-treated with standard KOH, HCl, HF and acetolysis methods (Faegri and Iversen, 1989). More detailed discussion is given in Edwards and Craigie (ms). Computation and diagram construction were aided by the computer and TILIA.GRAPH programs TILIA (Grimm, 1991).

The pollen profile covers the monolith thickness of 14 cm. Statistically acceptable counts of pollen were not recovered from the top of the ash layer, although estimates of pollen concentration from five levels within and around the visible ash layer (not shown here) show a marked reduction. Pollen and spores in the diagram (Fig. 3) are expressed as percentages of a total land pollen (TLP) sum which excludes the pollen of taxa considered to represent offisland species (i.e. *Pinus sylvestris, Ulmus, Quercus, Fraxinus excelsior, Alnus* and possibly *Corylus avellana*-type).

The pollen diagram is dominated by Cyperaceae and Poaceae, which are, along with *Calluna vulgaris* (present at <2 % here), typical of blanket peat floras. *Betula* pollen is well represented and size measurements from similar contexts elsewhere (Edwards and Craigie, 1998) suggest that this derives from tree birch (cf. *B. pubescens*) rather than the dwarf birch, *B. nana*.

It is not possible to say how much of the birch pollen could originate from off-island sources.

Empetrum nigrum, Vaccinium-type and Potentilla-type are frequent in mires and heaths, while the other pollen and spore taxa present are of types referrable to known plants and habitats in the Faroes (Hansen, 1966) or are already known from the fossil pollen record (Jóhansen, 1985) (e.g. Filipendua, Sedum, Lamiaceae, Plantago maritima, P. major/media (cf. P. major), Saxifraga granulata-type [cf. S. rosacea and S. rivularis], Thalictrum, Equisetum, Huperzia selago, Selaginella selaginoides). Chrysosplenium is unknown in the Faroes.

Discussion

The pre-landnám fauna of the Faroes shows many similarities with that of Iceland (Buckland, 1988), although it is somewhat more diverse. It is apparent that by the early Holocene, the fauna already contained many of those elements which became characteristic of infield as well as outfield areas after settlement. Othius punctulatus, now almost entirely restricted to infield sites and cliffs and shelves (Bengtson, 1981), and a likely candidate for anthropochorous dispersal, appears in the two preliminary samples (P1 & P2) and is also known from the poorly dated, although natural succession on Mykines (Buckland et al., 1998). An association with the eutrophic areas of bird cliffs is probable, and it may have been dipersed casually with migrating birds. Whilst some species may have been dispersed in this way, the majority of the

fauna is capable of flight, although the lists do include the large flightless weevil *Otiorhynchus nodosus*, which, although pathenogenic (Lindroth *et al.*, 1973), is unlikely to have been casually dispersed during the early Holocene. It is also present, with other flightless beetles, in Iceland (Buckland *et al.*, 1986b) before landnám. Rather than survival in refugia or casual individual dispersal, a single dispersal event in the early Holocene which introduced the bulk of the pre-landnám biota still appears the better solution to the origins of North Atlantic island biota.

The above sentiments are likely to apply to the flora also. The Saksunardalur palae-oflora is not dissimilar to that reported from elsewhere in the Faroes (Jóhansen, 1985), nor from either Iceland (Hallsdóttir, 1987; Rundgren, 1997) or Shetland (Bennett *et al.*, 1992). The fossil taxa include those types which became typical of grazed areas after landnám (e.g. Lamiaceae, *Angelica*, *Potentilla*, *Rumex acetosa* and *Ranunculus acris*). There are unlikely to be any elements here that could not have arrived via ice-rafting or avian transport of propagules.

Acknowledgements

We would like to thank Andy Dugmore who collected the 1998 monolith from Saksunardalur and Robert Craigie who assisted with the pollen analysis.

References

- Arge, S.V. 1989. Om Landnamet på Færøerne. hikuin 15: 103-128.
- Bengtson, S.-A. 1981. Terrestrial invertebrates of the Faroe Islands: III. Beetles (Coleoptera): Checklist, distribution, and habitats. *Fauna Norvegica*, B28: 52-82.

- Bennett, K.D., Boreham, S., Sharp, M.J. and Switsur, V.R. 1992. Holocene history of environment, vegetation and human settlement on Catta Ness, Lunnasting, Shetland. *Journal of Ecology* 80: 241-273.
- Birks, H.H., Gulliksen, S., Haflidason, H., Mangerud, J. and Possnert, G. 1996. new radiocarbon dates for the Vedde Ash and the Saksunarvatn Ash from western Norway. *Quaternary Research* 45: 119-127.
- Björk, S., Rundgren, M., Ingolfsson, O. and Funder, S. 1997. The Preboreal oscillation around the Nordic Seas: terrestrial and lacustrine responses. *Journal of Quaternary Science* 12: 455-465.
- Buckland, P.C. 1988. North Atlantic faunal connections
 introduction or endemics? *Entomologica scandinavica Supplement*, 32: 7-29.
- Buckland, P.C. and Dugmore, A.J. 1991. 'If this is a Refugium, why are my feet so bloody cold?' The origins of the Icelandic biota in the light of recent research. In: Maizels, J.K. and Caseldine, C. (eds.) Environmental Change in Iceland: Past and Present, 107-125. Kluwer Academic Publishers, Dordrecht.
- Buckland, P.C., Dugmore, A.J. and Sadler, J. 1991. Faunal change or taphonomic problem? A comparison of modern and fossil insect faunas from south east Iceland. *In:* Maizels, J.K. and Caseldine, C. (eds.). *Environmental Change in Iceland: Past and Present*, 127-146. Kluwer Academic Publishers, Dordrecht.
- Buckland, P.C., Perry, D.W., Gíslason, G.M. and Dugmore, A.J. 1986a. The pre-Landnam fauna of Iceland: a palaeontological contribution. *Boreas*, 15: 173-184.
- Buckland, P.C., Edwards, K.J., Sadler, J.P. and Dinnin, M.H. 1998. Late Holocene insect faunas from Mykines, Faroe Islands, with observations on associated pollen and early settlement records. *Fróðskaparrit*, 46: 287-296.
- Buckland, P.C., Gerrard, A.J., Larsen, G., Perry, D.W., Savory, D.R. and Sveinbjarnardóttir, G. 1986b. Late Holocene Palaeoecology at Ketilsstadir in Myrdalur, South Iceland. *Jökull*, 36: 41-55.
- Coope, G. R. 1986. The invasion and colonization of the North Atlantic islands: a palaeoecological solution to a biogeographic problem. *Philosophical Transactions of the Royal Society of London*, B314, 619-635. (Also published in H. Kornberg and M. H. Williamson (eds.) *Quantitative aspects of the ecology of biological invasions*. Royal Society and British Academy, London.

- Dahl, E. 1987. The nunatak theory reconsidered. *Ecological Bulletins* 38: 77-94.
- Edwards, K.J. and Cragie, R. 1998. Palynological and vegetational changes associated with deposition of Saksunaratn ash in the Faroe Islands. *Fróðskaparrit* 46: 245-258.
- Enckell, P.H. 1985. Island Life: Agency of man upon dispersal, distribution, and genetic variation in Faroese populations of terrestrial invertebrates. PhD. Thesis. University of Lund.
- Faegri, K. and Iversen, J. 1989. Textbook of pollen analysis, 4th edition by K. Faegri, P.E. Kaland and K. Krzywinski. Chichester: John Wiley and Sons.
- Grimm, E. 1991. *TILIA and TILIA.GRAPH*. Illinois State Museum, Springfield.
- Hallsdóttir, M. 1987. Pollen analytical studies of human influence on vegetation in relation to the Landnm tephra layer in southwest Iceland. Lund: Department of Quaternary Geology, Lund University, LUNDQUA thesis 18,
- Hansen, K. 1966. Vascular plants in the Faeroes. *Dansk Botanisk Arkiv*. 24: 1-140.
- Hansen, M. 1987. The Hydrophiloidea (Coleoptera) of Fennoscandia and Denmark. Fauna Entomologica Scandinavica 18. E.J.Brill, Copenhagen.
- Humlum, O., Christiansen, H.H., Svensson, H. and Mortensen, L.E. 1996. Moraine systems in the Faroe Islands: glaciological and climatological implications. *Danish Journal of Geography*, 96: 21-31.
- Jóhansen, J. 1978. Outwash of terristric soils into Lake Saksunarvatn, Faroe Islands. *Danmarks geologiske Undersøgelser Årbog* 1977: 31-37.
- Jóhansen, J. 1985. Studies in the vegetational history of

- the Faroe and Shetland islands. Tórshavn: Annales Societatis Scientiarum Faeroensis Supplementum XI., Thesis.
- Koch, K. 1989. Ökologie 1. Die K\u00e4fer Mitteleuropas. Goecke and Evers, Krefeld.
- Lindroth, C.H., Bengtson, S.-A. and Enckell, P.H. 1988.
 Terrestrial faunas of four isolated areas: A study in tracing old faunal centres. *Entomologica Scandinavica*, Suppl 32: 31-66.
- Lindroth, C. H., Anderson, H., Bödvarsson, H. and Richter, S.H. 1973. Surtsey, Iceland – The Development of a New Fauna, 1963-1970. Terrestrial Inverebrates. *Entomological Scandinavica* Suppl. 51.
- Löve, Á and Löve, D. (eds.) 1963. *North Atlantic Biota and their History*, Pergamon, Oxford.
- Lucht, A. (1987) Katalog. Die K\u00e4fer Mitteleuropas. Goecke and Evers, Krefeld.
- Mangerud, J., Furnes, H. and Jóhansen, J. 1986. A 9000year old ash bed on the Faroe Islands. *Quaternary Research*, 26: 262-265.
- Nilsson, A.N. and Holmen, M. 1995. The aquatic Adephaga (Coleoptera) of Fennoscandia and Denmark. II. Dytiscidae. Fauna Entomologica Scandinavica, 32. E.J.Brill, Leiden.
- Persson, C. 1971. Tephrochronological investigations of peat deposits in Scandinavia and on the Faroe Islands. *Svensk geologiske Undersøgelse, Ser. C. Årsbok* 65, 2: 1-34.
- Rundgren, M. 1997. Late Weichselian and early Holocene changes of vegetation, climate and sea level on the Skagi peninsula, northern Iceland. Lund: Lund University, Department of Quaternary Geology, Lundqua Thesis